Basic information

Name

Salmonella typhimurium DNA gyrase inhibitor (sbmC) -Yeast

Price

2011 EUR

Size

1000ug

Catalog no

GEN1197299.Yeast

Extended information

Long name

Recombinant Salmonella typhimurium DNA gyrase inhibitor (sbmC)

Alternative names

DNA gyrase inhibitor; DNA gyrase inhibitor; DNA gyrase inhibitor;

Gene name

sbmC

Other gene names

sbmC; sbmC;

General description

DNA gyrase inhibitor (sbmC) is a recombinant protein expressed in Yeast . The protein can be with or without a His-Tag or other tag in accordance to customer's request. All of our recombinant proteins are manufactured in strictly controlled facilities and by using a well established technology which guarantees full batch-to-bact consistency and experiment reproducibility.

Product category

Recombinant Proteins

Expression system

Yeast

Available also expressed in:

E Coli ; Yeast ; Baculovirus ; Mammalian Cell

Purity

Greater than 90% (determined by SDS-PAGE)

Form

Lyophilized protein

Storage

This protein can be stored at -20 degrees Celsius. For extended periods of time it is recommended to keep the protein frozen at -40 or -80 degrees Celsius. Avoid cycles of freezing and thawing as they might denaturate the polypeptide chains.

Applications

This protein can be used as a positive control for applications such as ELISA, IFA, RIA, Western Blot, etc.

Disease

Salmonella typhimurium, enteriditis and Salmonella paratyphi antibodies or media detect this rod-shaped (bacillus) gram-negative bacteria of the Enterobacteriaceae family. The two species of Salmonella are Salmonella enterica and Salmonella bongori. Salmonella enterica is the type species and is further divided into six subspecies that include over 2500 serovars. S. enterica subspecies are found worldwide in all warm-blooded animals, and in the environment. S. bongori is restricted to cold-blooded animals particularly reptiles. Strains of Salmonella cause illnesses such as typhoid fever, paratyphoid fever, and food poisoning (salmonellosis).

Description

Tissue, pathway, proteinase, peptidase, protease ,acrosin, lipoprotein, activator, caspase, trypsin, papain, esterase inhibitors are proteins or receptor ligands or receptor antagonists that bind to an enzyme receptor and decreases its activity. Since blocking an enzyme's activity can kill a pathogen or correct a metabolic imbalance, many drugs are enzyme inhibitors. Not all receptor antagonist that bind to enzymes are inhibitors; enzyme activator ligands or agonists bind to enzymes and increase their enzymatic activity, while enzyme substrates bind and are converted to products in the normal catalytic cycle of the enzyme.